

__

SECURE SOFTWARE DEVELOPMENT LIFECYCLE DEMYSTIFIED
Tools and lessons from building financial applications

__

The average cost of data breaches in 2017 was 3.62 million dollars1 and Equifax
alone lost 439M dollars2 in the aftermath of one of the worst data breaches in
history.
The recent EU GDPR regulation pushes those numbers even further: companies may
be fined up to 20M dollars or 4% of their global annual revenues in case of data
breaches.

So the common misconception that implementing security in application is costly, is
becoming simply unsustainable: building INsecure applications can cost
organizations orders of magnitude more than building secure ones. Other common
misconceptions are that securing applications means building fences (firewalls and
any other sort of perimetral defenses) around your ecosystem of applications, or
buying magical “black-box” products from big vendors that solve all of your security
issues in 6 months.

In the following we will discuss practices, tools, and lessons learned from our
experience in helping our customers build secure applications.

1 Source IBM: https://ibm.co/2tMp7ek
2 Source Reuters: https://reut.rs/2QsGivt

https://ibm.co/2tMp7ek
https://reut.rs/2QsGivt

__

1. SECURE SOFTWARE DEVELOPMENT LIFECYCLE TENETS

In our experience

• Security should be a process, i.e., it should be an integral and pervasive part
of your software development and delivery lifecycle;

• Security is a matter of tools and people, i.e., tools can help you, but do not
rely on them blindly because they alone can fail; use tools instead to build
observability in your process and to educate people to the consequences of
bad programming choices;

• Security should be testable in an automated fashion, i.e., anyone should be
able to enforce rule checking to assess application security at any given time
(possibly at every developer commit), and block application artifacts to be
built in the first place, let alone be deployed to production, if relevant
vulnerabilities are discovered;

• Security should be measurable, i.e., you should turn all tests and security rule
checking activities into actual numbers, and build a set of coherent KPIs that

o let you clearly understand how your application ecosystem security
varies over time (and you definitely want your KPIs to turn better and
better at any commit)

o let you enforce technical and business/legal Service Level Agreements

Security as a Process

In a traditional software development process, security is often thought about
mainly in the maintenance phase, when your application is in production.
Malicious attackers find vulnerabilities in your application and while your
organization begins firefighting technical, business, and legal issues, teams soon
start blaming each other, patches pile up in a poorly coordinated fashion, stocks
value plunge and attackers may already have stolen sensitive information or
compromised your business.
Sometimes, vulnerabilities are the result of bad design choices and become so
deeply tangled in your product that you can only mitigate them up to a certain
point, but not remove them completely.
A typical example in the hardware world comes from the Meltdown and Spectre
vulnerabilities that affect the last generations of microprocessors: those

vulnerabilities are the result of poor design choices, and dramatically impact any
modern microprocessor, making patches and fixes in many cases infeasible.
This is why you should build application security right from the inception phase of
any development process.
Here we will focus on a few relevant practices and tools that you can integrate in the
early phases of your development and delivery lifecycle to automatically enforce
security

The landscape of secure development practices and tools is wide, and the following
sections will focus on a some relevant practices and tools you can easily integrate in
you process right now. These practices and tools focus on earlier phases of the
development and delivery process, and especially relate to the development and
testing phases.

SSDLC -Secure Software Development LifeCycle – some key practices

Security in Software Development Lifecycles should entail much more practices
(more on some of them in following blog posts), with different levels of maturity, in
any phase on the traditional lifecycle.

One key point we want to stress, though, is that the common denominator for any
SSDLC initiative should be to focus and invest on education and awareness, not only

SSDLC

Dynamic Application Security Testing

Static Application Security Testing

Software Component Analysis

of your development teams (both internal and external), but also of your
organization as a whole.

Secure Software Development LifeCycle conceptual framework

Security should be testable

Here we will focus on three main practices to test and enforce security during the
development phases, namely

• Software Component Analysis

• SAST – Static Application Security Testing

• DAST – Dynamic Application Security Testing

Software Component Analysis
The Equifax data breach3 responsibility was not on Equifax code itself, but rather on
a third party, widely used open source library, the Apache Struts 2.x web application
framework, that was extensively used on Equifax web portal. Such vulnerability
allowed malicious users to steal 145.5 M user accounts, and resulted in a massive
public backlash, and a subsequent dramatic plunge on Equifax stock value.

3 EQUIFAX is a large credit reporting agency in U.S.A.; on march 2017 a serious input parameter validation flaw was
disclosed on Apache Struts 2.x (CVE-2017-5638). On may 2017, malicious users exploited such vulnerability in the
Equifax web portal to steal 145.5M users data.

Analysis Design Development

SAST

Code Review

Software
Component

Analysis

Testing

DAST / IAST

Maintenance

SIEM

Vault
Management

Issue TrackingIndipendent
Vulnerability
Assessment

Risk
Management

Consolidated
Security
Standard

Security Best
Practices

Threat
Modelling

Secure Coding
Guidelines

Security
Response
Planning

Secure Testing
Policies

Security
Response
Execution

Education & Awareness

RASP

Enterprise
Information

Security
Architecture

Continuous
Vulnerability
Assessment

In the aftermath of the data breach, many customers began asking us: “Are we using
the Apache Struts 2.x library too? Where in our application ecosystem do we use
it?”
Software Component Analysis tools allow to answer such questions, and
Dependency Track (https://docs.dependencytrack.org/) is an open source
alternative that has recently seen a dramatic increase in popularity and widespread
adoption.
This practice becomes even more relevant in contexts where the application
ecosystem is composed of hundreds or even thousands of applications, both
developed internally, and by a range of external contractors; in such situations,
organizations should be able to be informed as soon as possible about the following

• internal/external developers mistakenly introduced critically vulnerable
dependencies to an existing/running application;

• a new application enters the organization ecosystem, with relevant vulnerable
dependencies;

• a new vulnerability on dependencies used in the organization gets published.

Dependency Track dashboard examples

https://docs.dependencytrack.org/

SAST – Static Application Security Testing
This practice entails analyzing source code to identify patterns of bad programming
habits, such as missing SQL query parameter validation that may lead to SQL
injections4.

SONARQUBE (https://www.sonarqube.org/) is an open source SAST tool, with
widespread adoption, a strong community, and a myriad of plugins and rules to
enforce security validations. Findbugs (https://github.com/spotbugs/sonar-
findbugs) is one such plugin that extends default rules with more security-oriented
ones.
Vulnerabilities identified by SONARQUBE fall into different ranges of severity and
are directly identifiable in the source code. Quality gates can then be configured to
force build failures in case a relevant number of critical vulnerabilities are found, so
as to prevent insecure applications to reach any environment, let alone be deployed
to production.
SONARQUBE rules and quality gates allow developers to receive fast feedback about
vulnerabilities, promoting awareness and education through observability.

SONARQUBE dashboard examples

4 SQL Injection is a specific attack pattern that lets a malicious user inject SQL code in a poorly validated database
query, for instance to bypass query filters or to exfiltrate data from the database

https://www.sonarqube.org/
https://github.com/spotbugs/sonar-findbugs
https://github.com/spotbugs/sonar-findbugs

DAST – Dynamic Application Security Testing
This practice entails testing the application runtime to identify vulnerabilities, for
instance via penetration testing techniques. ZAP – Zed Attack Proxy
(https://www.zaproxy.org/) – is an open source Web Application penetration testing
tool that allows you to perform active and passive scans on web applications.
Passive scans simply inspect the HTTP traffic that goes through ZAP to identify
patterns of common vulnerabilities, such as cross-site scripting or SQL injections,
whereas active scans perform real a penetration tests, following common attack
patterns malicious users typically exploit (e.g., trying to inject SQL code via HTML form
parameters).

All of the above tools are open source, easily automatable via APIs and extensible via
plugins that allow for custom behavior to fit specific organization needs.

Security should be measurable

When trying to measure security within your application landscape, two needs
emerge:

• The need to evaluate vulnerabilities in objective, comparable ways, so as to
rank them and focus the efforts of solutions for the most relevant and
impactful ones;

• The need to score your source code against vulnerabilities, to see how well it
performs in time (e.g., new vulnerabilities solved/introduced at every code
commit).

The Common Vulnerability Scoring System (CVSS) is a standard framework that
captures the principal characteristics of a vulnerability and produce a numerical score
reflecting its severity. The numerical score can then be translated into a qualitative
representation (such as low, medium, high, and critical) to help organizations properly
assess and prioritize their vulnerability management processes.
The CVSS is composed of a set of metrics that, combined together, form a unique
indicator; these metrics fall into three groups:

• Base metrics take into account of both the Exploitability – characteristics of the
thing that is vulnerable (e.g., the Attack Vector – the channel one attacker may
conduct exploits, could be the Internet or a reserved protocol) and Impact -
consequences to the thing that suffers the impact (e.g., the Availability Impact
evaluates how the vulnerability may affect service/system uptime and
continuity); these metrics typically are static and do not change over time;

https://www.zaproxy.org/

• Temporal metrics take into account characteristics that may change over time,
for instance becoming less relevant (e.g., a new official patch for a vulnerability
may decrease the overall CVSS over time).

• Environmental metrics group characteristics of a vulnerability that are relevant
and unique to a particular application environment, e.g. to mitigate
consequences, as well as to promote or demote the importance of a vulnerable
system according to business risk.

The Weighted Risk Trend – WRT scores vulnerabilities in the source code, and
specifically attributes different weights to classes of issues (higher weight to more
critical ones); the weighted sum of all issues constitutes the WRT index. This index is
specifically interesting since it can track the security “performance” of a codebase
over time: a progressively shrinking WRT index means the source code grows safer,
whereas an increasing WRT index means new vulnerabilities appear in code without
developers taking actions to mitigate them.

__

2. SECURITY IN CONTINUOUS INTEGRATION AND DELIVERY PIPELINES

Practices, KPIs, and tools we mentioned above should be part of an integrated
Continuous Integration and Continuous Delivery pipeline, so that potentially every
developer commit can trigger SAST, DAST and software component analysis, and
prevent applications to be ever built, let alone deployed to any running
environment.
Automating security testing and measuring applications security against given KPIs
allows developers and organizations alike to feel increasingly more confident in the
code they write and put into production, and to create a common ground for
educating teams through awareness of good/bad programming habits, security-
wise.

__

3. KEY TAKEAWAY POINTS

Our experience in devising Secure Software Development Lifecycles for our
customers taught us the following:

• Security can be a process and can fit and extend your software development
process naturally;

• In order to be constantly enforced, security should be testable and
measurable in an automated fashion: tools and conceptual frameworks exist
to let you automate vulnerabilities detection and scoring them;

• Automated Tools for vulnerabilities detection (e.g., SAST, DAST, and Software
Component Analysis) are extremely helpful; however, tools can fail. They are
actually written by humans, and humans fail; they usually rely on heuristics,
and heuristics may fail; you have to deal with false positives, and missing
vulnerabilities detections; so any organization should use tools wisely, and
complement them with periodic code review sessions, to identify undetected
issues;

• Use automation, scoring and reporting, as well as human code reviews to
promote culture and knowledge about security across the organization.

Imola Informatica S.p.A. · via Selice 66/a · Imola (BO)

+39 0542 32640 | www.imolainformatica.it | blog.imolinfo.it

http://www.imolainformatica.it/

